
In this six-part series about real-time 3D
graphics on the ST, you'll learn about all
those aspects of graphics which are
essential to creating a solid object on the

screen and making it look real: fast polygon
filling, windowing, hidden surface removal,
lighting, colour and rotation.

You'll be able to create and manipulate
objects on the screen, just like in a favourite
flight simulator or game. But one essential
feature of a simulator of any kind, whether it
be about flying, road racing or whatever, is
that it runs in real-time.

Real-time means that the image on the
screen responds immediately and smoothly
to input from the joystick or keyboard.

To do this convincingly for a complex
scene is quite a tall order. Even commercial
films usually draw and photograph each
frame separately, so that motion is only seen
when the film is played back.

It's quite amazing, and a testament to the
power of the ST, that such impressive games
and simulators using solid vector graphics
have been written for it.

In this, the first in the series, you'll learn
how to draw and fill polygons - they're the
building blocks. Later, you'll be able to ani
mate and control them, in three dimensions!
Everything needed to do this will be either on
the CoverDisk or on these pages.

QUICK DRAW
In order to produce real-time 3D graphics for
a popular micro like the ST there is really only
one option open - using so-called 'vector'
graphics. But forget about the term vector for
now - put simply, what this means is that
objects on the screen are constructed from

polygon meshes.
A polygon is a flat geometric shape with

straight edges. An example of a four-sided
polygon is a square. And a polygon mesh is

Andrew Tyler is a uni
versity lecturer and
teaches a course in

microcomputer and
microprocessor pro
gramming. He has

had an interest in

computer graphics
for several years.

PART ONE:
DRAWING

ON THE
SCREEN

a group of polygons joined at their edges.
If the mesh is joined up along all of its

edges so that it's closed, it's called a poly
hedron. A cube is an example of a six-sided
polyhedron. Houses are constructed from
six-sided polyhedra, called bricks. Polyhe-
dra are used to build houses and graphics
objects for roughly the same reasons: it's
easy to construct building blocks with flat
faces and straight edges.

In the case of computer graphics on an
ST it's particularly important that an object
can be drawn quickly from a minimum of
information. When polygon meshes are
used, all that's required is a list of the coordi
nates of the vertices, or corners.

For now, don't worry about the details of
how a 3D object is constructed. Just remem
ber that the flat surfaces - the polygons -

I*

Time
Have you ever wished you could create

solid 3D graphics like those you see in

flight simulators? Andrew Tyler, in this

series, shows you how...

Graphics
Atari ST User



Surfaces (circled) and vertices (uncircled) of a polygon house. Bricks
are examples of simple polygons. In basic computer graphics polygons are
fitted together to form more complex shapes, like this house

t
y

. 1
II H

1 i ••'•'•'

niiim
• • Wmm

star t pixc i S'vSi*:: y-:ysy end pi xel%&m mt$&

s

X—>

A pixel polygon, magnified to show how lines are drawn using individual
pixels. On a normal-sized screen the pixels merge to form a straight line

->x
280,20

V

20,100

140,180 260,180

The numbers of the pentagon's vertices and edge connections. The pentagon is
constructed from a series of straight lines joined together to form a simple polygon

Atari ST User

300,8

which make up its sides are of paramount
importance. So we need to be able to draw
and fill in these polygons quickly.

ASSUMING ASSEMBLY
The first thing needed is assembly language.
But stop! Before you decide it's too difficult -
think again. It's not as unfriendly as it first
appears. It's the fastest programming lan
guage and perfect for real-time graphics.

All the programs in this series are written in
assembler code. To convert the assembler

code into something the 68000 processor at
the heart of the ST can understand requires a
special program called an assembler.

There are several very good assemblers
available, even some in the public domain. All
of the programs in this series have been writ
ten using the very popular and powerful
DevpacST assembler from HiSoft. On this
month's CoverDisk you'll find Version 1 of this
program, called GENST. It's a very friendly
and helpful integrated package which should
have you creating 3D graphics in no time.

Devpac Version 2 has the assembler and
debugger - the bit that checks for errors - all
within the single program. With Version 1 of
Devpac you can learn the basics but Version
2 will take you even further.

FAST FURIOUS FILLING
The objects for animation are assembled from
polygons glued together at the edges. Figure
1 shows a house constructed in this way, with
the circled numbers referring to polygons and
the uncircled numbers referring to the
vertices, or corners.

Also shown on the diagram are the axes of
the (x,y and z) coordinate system in which the
house is defined. In this system, y is the hori
zontal axis, x is the vertical axis and z makes
up the depth.

In the scheme we use, the house stands in

an imaginary world inside the computer,
called the world reference frame. What

appears on the screen is the result of a series
of calculations involving rotations, perspective
and windowing - or chopping - of what is out
side the screen.

Don't worry, all of these will be explained
later, but for the moment let's concentrate on
how to draw a solid polygon, which is the
most basic graphic element.

JOINING THE DOTS
Suppose we want to draw and fill in a very
small pentagon - a five-sided polygon. On
screen, with a magnifying glass, this might
look like Figure 2.

The sides of the pentagon aren't straight
because the screen is really made up of a
series of closely spaced dots, or pixels, which
can only be either on or off.

Without going into detail as to how this
screen RAM is laid out for the three resolu

tions of the ST, it's clear that the drawing of
lines is really a 'join the dots' exercise.

There's no need to worry here about the
details of how the screen RAM is mapped to
the screen since the Line A routines in the ST

Operating System are used to do the actual
drawing - they're fast enough for what we
want here and will take care of these details.

For drawing and filling a polygon, we need
to calculate the coordinates of the pixels
on the left and right boundaries, and then
join the corresponding pairs with horizontal
lines.

The start and end pixels shown in Figure 2
illustrate this for one particular line. The strate-



gy is simple enough. Calculating the coordi
nates of the boundary pixels however, isn't so
easy. Fortunately this problem was solved by
J E Bresenham in 1962 and has been the

basis of many line drawing programs ever
since.

BUFFING UP BRESENHAM
The modified Bresenham routine generates
the coordinates of the start pixels on the left-
hand side and the end coordinates on the

right-hand side of a polygon to be filled in
with horizontal lines.

Once again, with the emphasis on speed,
we want to store the data in a way which
makes it immediately accessible to the Line A
routine which draws the horizontal lines. This

store is called the x-buffer and has an

address in RAM at xbuf.

In assembly language, addresses are usu
ally denoted by such labels, and the assem
bler finally converts them to real addresses.
The layout of xbuf is an example of how
assembly language programming takes
advantage of easy access to RAM to provide
speedy access to data.

Xbuf is just a block of 400 long words - the
68000 can handle bits, bytes (8 bits), words
(16 bits) and long words (32 bits). Each
contains the start and end x-coordinates of a
horizontal line.

This is big enough to cope with the 400
possible y-values (vertical positions) on the
screen in high resolution, and therefore also
medium and low resolution. Each long word
refers to a particular y-value which is the posi
tion of that word from the start of the block.

ON THE RIGHT LINE
The ST comes armed with a host of fast

built-in graphics routines. One of them in par
ticular is very useful. It's the one which draws
horizontal lines.

These routines are tailored to the hardware

of the ST (and are therefore called device-
dependent) and are accessible through a
special feature of the 68000 processor called
exception handling.

One 'exception' has been used by the
designers of the ST to enable the user to do
fast graphics. It's called the Line A Emulator.
Without becoming bogged down in technical
ities, it works in the following way.

Whenever the processor sees the word
$A00n (the $ sign means that this is a
hexadecimal number) it recognises an excep
tion, takes control and executes the nth rou

tine of the special graphics functions, all to be
found in ROM.

The processor knows where the functions
are located because it keeps the address in a
special list called the exception vector table.
Accessing special routines this way is an
alternative to subroutines.

These routines use special variables tables
to do their business, and to set these up the

The finished 3D-01 program from the CoverDisk
showing how a polygon can be filled with
colour. The program cycles automatically
through six different palettes of colour

routine $A000 must be called before any
others as part of initialization.

The horizontal line drawing routine is num
ber four in the list. To use it, the start and

end pixel coordinates must be passed to
the tables together with other information,
such as the colour which is required and
what kind of line it is to be.

There's scope for variety here since the
line can have a fill pattern - it can be dotted
in many different ways. We've used a solid
line but you could experiment. The block to
play with is Fill, in the file dataJDO.s

IN GLORIOUS COLOUR
In low resolution on the ST, it's possible to
use 16 colours simultaneously out of a possi
ble 512. What these colours are is easily
seen on the Control Panel by means of the
red, green and blue sliders.

There are only 16 colours available at any

JARGON
LIST

Assembler code - the assembly language's
'words'

Assembly language - the lowest' program
ming language

Bresenham's algorithm - a method of
drawing lines very quickly

Exception - how the 68000 processor han
dles an 'unusual' situation

Exception vector table - addresses of

routines that handle exceptions
Graphics primitives - fancy name for sim

ple objects on the screen
Hexadecimal - computer number system.

Lumps four bits together as a unit (nibble)
Line A emulator - how the 68000 calls Line

A routines

Line A routines - fast drawing routines in
the ST Operating System

Nibble - a group of 4 bits (binary digits) with a
top value of 16. Two nibbles to a byte

Polygon - 2D object with straight sides
Polygon mesh - several polygons connect

ed together at their edges
Solid vector graphics - 'solid' objects

drawn from polygons
Real-time - running now, as you watch it
TRAP - programmable exception built into the

68000 processor
Vector - separation between two points,

shown as an arrow

World reference frame - the 'world' inside

the computer
X-buffer - x-coordinates for

starting and ending horizontal lines

given time because the hardware which is
responsible for generating the colour can only
read a nibble-sized (4 bits) piece of data.
Each of these bits is said to refer to a different

colour plane. So in low resolution the ST has
four colour planes. In high resolution it has
only one.

To change the 16 colours in the palette a
special routine in the Operating System can
be used. This uses a programmable excep
tion, which in this case is called a TRAP.

Like the Line A routines, the TRAPs are

numbered. TRAP #14 accesses that part
of the OS called the XBIOS. Once called,
the actual routine to be executed is speci
fied by a number pushed onto the
STACK. You can see how it's done in the list

ings.

TAKE A LOOK AT THESE
What has been shown here is how to draw

and fill in a large polygon quickly and easily.
This is an essential starting point for solid 3D
graphics.

The polygon is, in fact, a pentagon and the
coordinates of its vertices are listed in the

data section at the end of the file 3D_01 .S. It's
shown in Figure 3.

To make it colourful, six colour palettes
are cycled through in succession. The pro
gram is split up into several bits, called
source files. The one that really matters is
3D_01.S,

This is the one which must be assembled

by GENST. When this happens it pulls
in all the other files by means of the
INCLUDE directive. This is how you run the
assembler.

From the Desktop, first load the assembler
program GENST.PRG. Then load 3DJ31.S
from the File menu. Then pull down the
Options menu and click on Assemble.

Give the binary file to be generated the file
name 3D_01.PRG and assemble it with no
listing. Quit the assembler and run
3D_01 .PRG from the Desktop as usual.

One final point. The picture on the screen
will flicker. This is a consequence of using
only one screen to draw on. It can be avoided
by using a technique called 'screen buffer
ing'. We'll talk about that next time together
with how to 'window', or clip, a picture to fit
into the monitor screen.

All of the programs associated with this
series are included on the CoverDisk. See

Runtime on the CoverDisk for a full explana
tion of what they are and how to use them.

IN THE BOOK
This article and programs are based on a
forthcoming book, Real Time 3D Graphics by
Andrew Tyler which is scheduled for publica
tion soon by Sigma Press. Everything which is
included here is discussed in far greater
detail in the book, together with example pro
grams and much more besides.

Atari ST User "7* -•



REAL-TIME 3D GRAPHICS - PART TWO

Last month, in the first part of this series,
we looked at how to draw solid poly
gons. Remember, a polygon is a math
ematical name for a flat surface with

several straight sides - a triangle is the sim
plest. Now we can 'glue' them together to
make the solid objects in our real-time 3D
graphics programs.

In this instalment we will look at two further

aspects of getting a picture onto the screen:
windowing and screen buffering. The first of
these is the last stage of a series of transfor
mations, or changes, which are made to an
object in bringing it from the world inside the
computer onto the screen.

The second is really just a technicality to
make the 'movie' look real. Both windowing
and screen buffering are implemented in the
example program on the CoverDisk.

THROUGH THE WINDOW
Windowing means exactly what it says. When
you look out of a window you don't see every
thing that's outside, only what is not cut off by
the window frame. The monitor screen is simi

larly limited in size and there must be some
way of 'clipping' off the bits of the picture
which fall outside.

In fact, the outline of the visible window is
called the view port, or sometimes the clip
frame to emphasise its function. It isn't even
necessary to confine the clip frame to the
screen boundary. Often the 'active' part of the
screen is much smaller, especially when the
picture is complicated and much drawing has
to be done.

Having a small picture speeds things up -
speed is always a serious consideration in
computer graphics. Sometimes the ability to

vary the visible screen size can be used to
special effect - like an iris opening. Figure 1
shows windowing.

Windowing of some kind is essential. This
is because there is a fixed block of RAM

reserved for the physical screen - there's also
a logical screen - more about that later - and
this defines a window.

In low resolution, as on a colour television,
this window is 200 pixels high and 320 pixels
wide. Any attempt to draw something outside
these limits could result in disaster because

the only way it can be done is to encroach on
the RAM outside of screen RAM. If this bor

dering RAM is being used for something else,
like the program for example, then it will be
overwritten.

Clearly there are precautions that can be
taken to ensure that windowing is kept to a
minimum, such as totally rejecting objects
that lie entirely outside the screen limits. But
in the quest for realism it is inevitable that
some objects will span the view port.

The windowing algorithm must decide what
is inside and what is outside the view port and
what the clipped object will look like. Since
we are going to be drawing solid objects, on
which you can't see the hidden sides at the
rear, it isn't good enough to simply forget
about lines that lie outside the clip frame.

These lines must be replaced by ones that
complete the clipped shape at the window
boundary. This requirement to close shapes
in order to fill them in is shown in Figure 2.

An elegant solution to this problem was
found many years ago by Sutherland and
Hodgman. Ivan Sutherland is one of the folk
heroes of computer graphics - he was the
originator of many techniques in his Sketch

pad system.
Before discussing Sutherland and Hodg-

man's work, it's worth commenting that some
form of clipping is immediately available
from the way data has been stored before
drawing.

Remember from Part One that each poly
gon to be filled by a series of horizontal scan
lines has the start and end coordinates of

each line stored in a list called the x-buffer.

The list starts at the highest y-coordinate and
ends at the lowest.

To clip within a smaller window, all that has
to be done is to ignore those lines which lie
outside the window in the y direction, and
adjust the x-coordinates when they lie outside
the window in the x direction.

Right now we prefer to clip objects before
they get to the x-buffer. And the Sutherland-
Hodgman algorithm does this very well.

CLIPPING ALGORITHM
The Sutherland-Hodgman algorithm is, in
fact, more powerful than is really required
here - it can handle polygons of any shape. It
does not even require the clip frame to be
rectangular.

For speed and simplicity the objects we
draw will be constructed only from convex
polygons in this series - all external angles
greater than zero, and essentially 'round' in
shape. Figure 2 is more general since it illus
trates clipping of a non-convex polygon.

Looking at the diagram we can see that the
general effect of windowing is to chop off ver
tices, such as A, and replace them with new
edges connected by new vertices, such as R
and S. The Sutherland Hodgman strategy is
to find the intersections in turn of all the

Window
on the
World

Andrew Tyler

reveals that

there's often

more than meets

the eye when you

move into the

third dimension...



edges of the polygon with each boundary.
Since this clip frame has four sides, this

means that four complete cycles of the poly
gon will be made. On each cycle some of the
original edges may be lost and new ones
added.

As each new vertex is examined, various
actions are taken which depend on its posi
tion and that of the previous vertex examined.
These cases are illustrated in Figure 2 and
examined below:

1. Ifthe next vertex is outside the frame (A),
check the position of the previous vertex, (C).
If that was inside, find the point of intersection
(S) of the edge with the clip frame, and save
it. Don't save the next vertex.

2. If the next vertex is inside the frame, (B),
check the position of the two previous vertex,
(A). If that was out, find the point of intersec
tion of the edge joining them with the clip
frame, (R) and save it. Also save the next ver
tex, (B). This is the algorithm applied to all the
vertices going round the polygon.

CALCULATION BY ITERATION
At first sight, it might appear that calculating
the points of intersection of sloping polygon
sides with the clip frame requires a lot of
nasty mathematical computation involving
time-consuming multiplications and divisions
(the slowest instruction). This is something we
definitely want to avoid for our real-time
graphics. Surprisingly, this is not so.

One of the bonuses of working directly in
assembly language is that it's possible to get
answers using only additions and subtrac
tions, and where they are unavoidable, to do
multiplications and divisions in powers of two
by means of fast left and right shifts of the
contents of registers. Are you still with us?

The secret of calculating the points of inter
section is to use iteration. To illustrate how

this is done look at Figure 3. Here is shown
the case where the previous point (A) was
outside, but the next point (B) is inside the
frame boundary x=xmin.

There are two possibilities depending on
whether A or B is nearer the boundary. What
is wanted here is the intersection of the edge
AB with the frame. This intersection will

replace A in the list of polygon vertices after
the clipping.

To find the point of intersection the average
of the coordinates of A and B is calculated.

This is T1. Then either T1 and A are aver

aged, as in case 1, or T1 and B are averaged,
as in case 2. In either case notice how the

new average, T2 is getting closer to the
boundary.

This iterative process continues until the
boundary itself is reached, which does not
take long. The averaging can be done quickly
with an addition and a right shift - a very fast
division by two. To follow the complete algo
rithm through in all its gory details, look at the
subroutine file core_01 .s

SCREEN BUFFERING
The problem with the picture generated in
Part One was that it flickered. Generating
real-time computer graphics is almost the
same as making a movie, except that in com
puter graphics the pictures are drawn just
before they are displayed, often in response
to changing input conditions from a joystick or
some other device.

This is where computer graphics really
scores over movies, which are totally pre
dictable. The thing they both have in common
is that the illusion of motion is created by pro-

x nin ' x nax

Clipping a polygon - the polygon must be closed at the boundary

case 1

y

A

x ynax

ymn
i

Tl (first iteration)

W\-ve

r
(xnin-x) -ve "

xnifi

•>*

- - - x i

i i

i /

i /

i i

i i

;
"-*--. i'

" " - - i
Windowing - the ability to view a part of an image, such as a polygon, is essential

case 2

xnin

Finding a point of intersection by iteration - where the polygon gets the chop



jecting still pictures, or frames, in a progres
sion too fast for the eye to detect the flicker.

For this to happen, the time between
frames should be less than about 1/20th of a

second. Of course, in games this time is often
stretched to the limit, and any real program is
a trade-off between complexity and the slow
est tolerable speed.

The problem for us is that with a single
screen it's not possible to display one frame
and generate the next. The solution is
straightforward - have two or more screens.

We'll take the simplest option, two screens.
One to display the frame which has just been
drawn (the physical screen) and one to draw
the next one on (the logical screen).

When the next frame is drawn and needs to

be displayed, these two screens are
exchanged and the cycle is repeated. There
are even routines in the Operating System of
the ST to help do this. First, a few words
about how the Operating System works.

OPERATING SYSTEM
The Operating Sysytem (OS) as a whole is
called TOS, but it consists of several parts.
There are the device-independent parts (with
abbreviations BDOS, XBDOS, VDI and AES)
which would work on any computer with TOS,
and the device-dependent parts (BIOS,
XBIOS and line A routines) which depend on
the hardware details of the ST.

These all constitute legal' ways of using
the OS. Illegal ways meddle with the contents
of system registers whose addresses may
change between machines manufactured at
different times.

We are definitely going to be legal. For our
purposes, there are several useful routines in
the XBIOS concerned with the screens.

XBIOS means extension of the Basic Input
Output System. It's a large piece of software
residing in ROM which controls the flow of

D

a

JARGON LIST

BIOS - the part of the ST's operat
ing system concerned with input
and output
Clip frame - another name for the
window

Iteration - going around in a cir
cle and getting better each time
Left shift - moving a register's
contents one bit to the left

Register - one of the special
places inside the 68000 processor
where calculations are done

Right shift - moving a register's
contents one bit to the right
Screen buffering - having two
screens; one to display and one to
draw on

Sutherland-Hodgman algo
rithm - a way of windowing
Vertex - the sharp corner of a
polygon
Windowing - chopping out what's
not in view

XBIOS - an extension to the BIOS

information to and from such externals as the

keyboard, mouse, joystick and the monitor.
For our purposes the XBIOS routines we

want are: #2 - tell us the address of the phys
ical screen (we can then calculate the logical
screen address by adding 32kbytes); #5 -
switch the physical and logical screens; and
#37 - wait for the vertical blank interrupt.

Some explanation of these routines is help

ful. They are listed in the file system_02.s. All
the XBIOS routines work by pushing all rele
vant information onto the STACK which is a

temporary storage area for the 68000 proces
sor, then declaring the TRAP #14 instruction.

This is another of those exception instruc
tions which the system supervisor performs
privately. Routine #2 tells us where the OS
has located the physical screen and, by
adding 32kbytes, determines where to place
the logical screen. The distinction between
these two screens is lost as soon as they
have been switched once so in the routines

they are simply called screen 1 and screen 2.
Routine #5 causes the system to switch the

identity of the two screens and #37 delays
this switch until the electron beam in the mon

itor screen reaches the bottom and is ready to
fly back to the top. The time for this to occur is
called the vertical blank interrupt and is a
good time to make a flicker-free switch.

There is one other requirement of course.
The program must also be synchronised to
the swap of the two screens. The swap is
called at the end of drawing each frame.

THE EXAMPLE PROGRAM
The example program draws a pentagon
inside an opening rectangular window. The
control program to do this is in the file
3D_01.S and should be assembled with the
DevpacSTI assembler on the CoverDisk.

As indicated by the Include directives in
this file, all other files will be pulled in at
assembly. Since these include files from Part
One it would be a good idea to dedicate a
disk to this series and copy all the files onto it.

• This is one in a series of articles which
are based on a forthcoming publication:
Real Time 3D Graphics by Andrew
Tyler. The book is to be published soon
by Sigma Press.

Progressive stages in the
windowing process. Each
window is a little larger
than the last and more of

the polygon is revealed

B



REAL-TIME 3D GRAPHICS - PART THREE

It's a curious fact that distant objects look
smaller than those which are close. They
aren't smaller, but they subtend a smaller
angle at the eye. So for any world we cre

ate inside the computer to look real, the size
of objects must diminish as they recede into
the distance.

In real life all of this is done by the brain
and the eye. On the computer screen we
have to get the same effect with the help of
geometry. That's what this month's article is
all about - the perspective transform.

But before we launch into the perspective
transform it's time to face up to an unfriendly
little topic that's been lurking in the back
ground since Part 1, when we considered
coordinate systems and frames of reference.

It's a good idea to deal with it here,
because from now on we'll have to think in 3D

most of the time, rather than the 2D world of
the monitor screen.

One of the most confusing aspects of com
puter graphics results from the way geometry
is used in the various stages of bringing an
object to life on-screen.

It helps a lot to visualise these stages from
particular points of view which are called
frames of reference.

For example, suppose you are going to
build a model railway and have marked out
the positions of each section of track, build
ings and any other structures on a rectangu
lar base, where x is along the long side and y
is along the short side and zero is at one cor
ner.

This way of fixing the positions of every
thing is called the world reference frame, and
the way x and y are set up is called the world
coordinate system.

But each individual object in the layout has
its own detailed structure ,and we must have
a separate way of specifying this, indepen
dent of where it is on the layout.

We could imagine listing the dimensions of
each part of the object as measured from its
centre. This is called the object reference
frame.

Then, since the train itself may be in contin
uous motion, we need only specify its current
position on the track by a single pair of coor
dinates - perhaps the coordinates of its cen-

Jargon list
Subtend: Defines an angle of view

Column vector: The components of a
vector written as a list in a column

FRAME: A space opened on the STACK
by the LINK instruction

Homogenous co-ordinates: 4D
mathematical space

LINK: A 68000 instruction that lets you
reserve space on the STACK

Matrices: A way of showing how one
vector changes into another - as in
rotation, for example

Perspective transform: Projecting the
3D world inside the computer on to
the 2D screen

STACK: A temporary storage place used
by the 68000 processor

World coordinate system: The grid
layout for the 3D world inside the
computer

World reference frame: The space
occupied by the 3D world inside the
computer

tre would do - in the world frame. We can

then refer to its object frame for the details.
But hold on, we haven't finished yet. Since

this layout has to be drawn on the ST's
screen, it has to be seen from a particular
viewpoint, that of you, the observer. The
frame of reference attached to the observer is

called the view reference frame.

CONFUSED?
Furthermore, the outline of each visible object
when projected on to the screen for display is
then a set of polygons whose vertices are
specified in screen coordinates. The relation
between these various reference frames is

shown in Figure 1.
One other thing. Confusion abounds when

it comes to setting up the coordinate axes
which accompany these frames of reference.
This is because there is no unique way of
labelling the directions up, forwards and side

ways, and different people have different
preferences.

The first option is to decide whether to use
left or right-handed coordinates. Figure 2
shows these alternatives. We have chosen to

use the right-handed system, since that's
what is comon in science and engineering.

The decision to point x upwards results
from another convention in computer graph
ics - that of pointing the z-axis into the pic
ture. This convention is adhered to consis

tently throughout.
There is one last coordinate system to deal

with - that of the screen. The origin (0,0) of
the screen coordinates (xs.ys) is at the top
left-hand corner of the screen, so a conver
sion to this system has to be made before the
picture can be displayed.

Figure 3 shows an object, in this case a
cube, defined inside the computer in the
world frame and seen from the viewpoint - the
observer's eye, also called the centre of pro
jection - which lies some distance (-100 in
this case) along the negative axis of the view
frame.

The monitor screen lies in the xv, yv plane
of the view frame and is called the view plane.
Complicated, isn't it! What we want on the
monitor is the outline marked by the intersec
tion on the view plane of the 'rays' from the
object to the viewpoint.

That's really all there is to it. This is a partic
ularly simple type of perspective projection.
Draughtsmen use many other types, but this
one works well.

To see how the perspective projection is
worked out, look at Figure 4, where the line
ED produces the perspective projection CB.
Without going into details, you can see that
the triangle ABC is similar to the triangle AED,
so that the ratio CB/ED is in the ratio d/(d+zv).
This, therefore, is the factor by which DE must
be multiplied to get the projection CB.

There only remains an adjustment to
express CB in terms of screen coordinates xs
and ys, which have their origin at the top left-
hand corner of the screen.

It's pretty clear that drawing in 3D gets
complicated unless you have a shorthand
notation. That's what vectors are - they allow
you to specify a distance and direction in 3D

•

point of
view

Andrew Tyler continues

his series on bringing 3D

graphics to the ST screen

Atari ST User



easily and quickly. It's not surprising then that
many of the complicated calculations in com
puter graphics are done in terms of vectors.
In fact, it turns out that these calculations can
themselves also be written in a special short
hand notation - called matrices.

Vectors and matrices go hand in hand.
Whatever convention is chosen for the vectors

affects what the matrices look like.

Let's look at how vectors and matrices can

be used to perform calculations in computer
graphics. This is one of the areas of mystique
of the subject. If you can understand what's
going on here you can really impress your
friends.

To be really tricky, we'll do the perspective
projection as a matrix calculation. It isn't really
necessary to do it this way, but it will provide
an opportunity to introduce another buzz
word - homogeneous coordinates - and
show off a clever assembler instruction, LINK,
which allows us to safely meddle with the
STACK.

You might remember from your GCSE maths
that rotations can be done by matrices. This is
certainly one application that is very useful
and straightforward.

Figure 5 shows a 2D vector which
stretches from the origin to the point 1,0 being
rotated to the point 0,1. We want to have
some way of saying this using geometry. A
matrix is the answer.

Here's the way it's written down:

(?H? o)-0
What does this mean? The object on the

left hand side is the final vector, written in a
column and the object on the extreme right is
the original vector, also written as a column.
The thing in the middle is called a 2x2 matrix
transform for a 90° rotation in the x-y plane.

To be thorough we should have also
included the z-axis - which points out of the
paper - in the figure even though no z values
are changed by this particular rotation. Then
the matrix would have had 3 rows and 3

columns making it 3x3. All rotations are 3x3
matrices.

The product as a whole is a piece of math
ematical machinery. The good news is that
having worked it out for this one case, it will
work on any vector we care to try, not just the
one at 0,1.

Well, we'll meet rotations again later. For
the moment, just note that matrix transforms
like to multiply a column vector on the right to
produce an answer on the left.

The perspective transform just can't be
done using regular 3x3 matrices in x-y-z
space, but it can if we move into the fourth
dimension and treat it as a 4x4 transform.

Doesn't that sound crazy? But mathemati
cians do this sort of thing all the time. Invent
ing an extra dimension provides a way round
the problem - it gives more 'space' to move
in.

Funnily enough, the value of this dimension
is always 1 and so a point in ordinary space
with coordinates x,y,z has coordinates x,y,z,1
in this 4D space.

These four dimensions are called homoge
neous coordinates. They are very popular
with graphics programmers because with
them, all manipulations of an object can be
done as a matrix product.

In the program file on the CoverDisk called
core_02.s you can see how the perspective
transform is done as a matrix product in

v^iiieM frane \

yv zv

1. Frames of Reference

right-handed

x

XH

2. Right-handed and left-handed coordinates

view point

3. Perspective projection

xo

t
object franc

left-handed

x

screen origin

^zo

Atari ST User -•-•-•



homogeneous coordinates. The transform is a
4x4 matrix and is listed in the file data_02.s
for a viewpoint at position -100 along the neg
ative z-axis of the view frame.

Don't worry if you can't follow it through in
detail, just think of it as a piece of mathemati
cal machinery. There's an additional item in
that file of interest to the assembly language
'athlete'.

It's the use of the 68000 instruction LINK

which opens up a space on the STACK -
called a FRAME - where we can temporarily
store the results of our calculations without

the risk of messing it up.
When we've finished we tidy up the stack

with the UNLK instruction.

A GREAT MONOLITH
This month we are going to construct a sign in
the world frame and look at it from some dis

tance away. It is a placard with the letters ST
written on it, called the ST monolith.

Figure 6 shows it erected in the world
frame and seen from behind. In later

instalments we'll rotate it in various ways and
show it illuminated by a light source.
Right now all we want to do is build it and look
at it.

The monolith is interesting because it's
constructed from six rectangles of different
size and colour, pasted together to make the
final image. Because it's complicated, we
need several lists to contain all the necessary
data, in a form that's easy for the program to
use.

The file data_01.s contains these lists and
the vertex numbers are shown in Figure 7.
Note that for each rectangle we list the colour
(my_colour), the number of edges
(my_nedges) and the connections of vertices
going round in a clockwise order repeating
the first vertex at the end to close the shape
(my_edglst).

The actual coordinates of the vertices are

listed separately in the three lists my_datax,
my_datay and my_dataz. The total number of
polygons is given in my_npoly. If you want,
you can draw something of your own.

The only way of quitting the programs in
Part 1 and Part 2 was by switching off the ST.
This time, you can stop the example program
running from the keyboard.

This is done using first an operating system
BIOS call - number $1, called bconstat - to
see if a key has been pressed. Ifone has, this
returns the number -1 in the 68000 register
DO, which then triggers an operating system
BDOS call (number $4C called pjerm) to
return to the calling program, which in this
case is the Desktop.

This test for a key press occurs right at the
end of the main control program 3D_03.S

ON THE DISK
The example program this month shows a
perspective view of the ST monolith illustrated
in Figures 6 and 7. The file to assemble is
3D_03.S. It INCLUDES all the others.

Note also that all the previous files from
Part 1 and Part 2 are pulled in at assembly
with the INCLUDE directive.

So if you haven't already done it, now is a
good time to copy all the files for the series
onto one disk to build up your complete 3D
graphics program.

• This article and programs are based on
the book RealTime 3D Graphics which has
been published recently.

Atari ST User

centre of

projection fi

(0,B,-d)

4. Similar triangles

y

,104)

^(1,0)
/" X

5. A 2D rotation

ew poir

6. Rear view of the ST monolith

4 5

9

10

6

16

19

17

18

12

8
ze 21

11

13

1415

7 23 22

7. Construction of the ST monolith.



REAL-TIME GRAPHICS - PART FOUR

Going round
in circles
Static pictures on the screen can be

dead boring, but using what we have
picked up so far in this series it is
possible to achieve quite a lot in the

way of animation. So now let's get things mov
ing along.

Rotating an object is a rather strange pro
cess, particularly when several rotations are
done in succession.

In general, calculating the positions of the
vertices of an object after a rotation is a com
plicated business.

However, we can simplify the task as much
as possible by doing rotations about the x, y
or z axes. That is what we will look at here.

Figure I (see page 111) shows the rotation
of a point p to a new position at p' about each
of the principal axes.

Different symbols are chosen for the angles
for different axes to avoid confusion when

dealing with compound rotations about sev
eral axes in succession.

One important convention to stick with is
the direction of rotation with respect to the
axes. Looking at the figure you can see that
the direction of rotation is clockwise looking
into the axis of rotation.

This is said to be a positive rotation.
Naturally, going the other way is negative.
When an object is rotated about an axis the
vertices which lie far from the axis move in

large circles while those which lie close move
in smaller ones.

At first sight it might seem difficult to calcu
late where the vertices move to, but fortu
nately matrices are ideally suited to this task.
Remember, matrices were introduced in Part
3 of the series as a way of carrying out the
perspective transform.

The matrices for rotations are rather sim

pler, being 3x3 (3 rows and 3 columns) in
size.

One interesting property of a rotation is that
it doesn't change the shape of an object, and
this explains why the rotation matrices are so
simple.

To illustrate how the rotation matrices are

constructed look at the 2D rotation about the

x axis in Figure II. The x coordinate of point p
is not changed by the rotation, but the y and z

coordinates are.

You can see that the y component is
reduced but the z component is increased
and - because of the circular motion - the

sine and cosine of the rotation angle are the
important maths. The exact relations between
the coordinates of p(x,y,z) and of p'(x'y',z')
are:

x' = x

y' = cos 6 .y - sin 9 ,z
z' = sin 9 .y + cos 9 .z

which can be written as a matrix product

(3-0
0 0

cos 9 sin 6

sin 9 cos 9

Rotations about the y and z axes look
rather similar except that the order of the rows
and columns of the matrix are interchanged.
They are rotation about the y axis:

(x'\ /cosO 0 sin O \ / x\
y = 0 1 0 . y
z/ V-sin 4> 0 cos O / \z /

Rotation about the z axis:

(x'\ /cosy -sin y 0\ /x\
y' J=I sin y cosy 0 1. j y J
i) \ 0 0 1/ \zj

TRIG TABLES
In the bad old days before electronic calcula
tors were invented it was usual to use tables

to look up precalculated values of compli
cated mathematical functions.

Instead of a calculator, every student car
ried a book of tables. This is how we will

determine the sines and cosines of rotation

angles for the rotation matrix.
It might appear that there is a problem

here, since sines and cosines of all angles lie
between 0 and 1 and yet the smallest two val
ues in binary arithmetic are 0 (lowest bit
clear) or 1 (lowest bit set). Remember that for
speed we want to stick with binary integer

Andrew Tyler

twists and turns

objects on the

screen

arithmetic. How then can we handle, for
example, the angle 60, for which the cosine
equals 0.5?

One solution is to multiply all trig functions
by a large factor - rounding off what is left
behind the decimal point - while calculations
are being done, and then divide out at the
factor at the end.

The factor 16,384, which in binary is 2 14,
is quite suitable for this, and confines all trig
functions to word size. When it comes to

dividing out the factor 2 14 this can easily be
done in binary by 14 right shifts without the
need for time-consuming divisions.

It is very convenient to make sines and
cosines word length since they easily fit in the
microprocessor registers, especially when
mutiplications are being carried out.

This strategy works fine providing certain
precautions are taken. Most important is to
remember that there is still an error in each

cosine and sine, since it is only accurate to
that last bit, which is 1 part in 16,384.

This may be a problem in any calculation
where an object is progressively rotated,
using the calculated vertices from the previ
ous orientation to get the next so that accu
mulating errors give rise to visible distortion.
This is something to avoid.

A SINE FOR ALL ANGLES
Have a look at the program file DATAJD3.S.
which contains the sines of angles from 0 to
90 in increments of 1, multiplied by the factor
16,384 as explained above.

Surprisingly, this is all that's required to cal
culate the sine or cosine - at degree intervals
- of any angle between 0 and 360, and is the
look-up table we will use.

Why does this work? Put in a nutshell,
going from 0 to 360 is like going all the way
round a circle. But a circle is an object of high
symmetry and it is possible to construct the
whole circle from just one quarter.

The first routine in CORE_03.S shows how
this is done. For speed, it really makes more
sense to have a longer look-up table with the
sines and cosines for the complete range 0 to
360, but to illustrate the similarity of sines and
cosines it has been done in the way

Atari ST User SEB» -Z^



described. Rotation about a single axis is fine
but in real life, rotations are likely to occur
about all three axes. This is where the curious

nature of combined rotations becomes

apparent.
Figure III shows this. In 1 a point p is first

rotated about the x axis by 90 and then about
the z axis by 90 to end up along the x axis. In
2 the order of rotations is reversed so that it

ends up along the negative y axis. Clearly the
order of rotations is important.

We need a consistent scheme to deal with

combined rotations about the three axes. It

isn't sufficient just to list the three separate
rotation angles since there is no record of the
order of the rotations.

INTO THE MATRIX
There are several ways of dealing with this
problem: Some simple and others compli
cated. We needn't worry about complicated
solutions here, instead we'll take the simplest
option.

The simple scheme is to keep a running
total of the angles of rotation about the sepa
rate axes and then do the rotations in a fixed

order.

The advantage is that the three rotation
matrices can be multiplied - concatenated, if
you want to impress your friends - together
beforehand to form a single matrix and then
the transform done all in one go.

That is what happens in the example pro
gram. What happens on screen as the angles
are changed is clearly unique to this order of
the matrices but, providing the order is
remembered, the end result is predictable.

We will use this transform in a later instal

ment to construct a quite complicated object.
Look at the file CORE_03.S. You will find in

the subroutine a calculation of the nine ele

ments of the transform of a combined rotation

which consists of a first rotation about the z

axis followed by a second rotation about the y
axis and then a third rotation about the x axis.

It doesn't matter if some of the rotations are

zero. In that case the appropriate matrix ele
ments are zero the important thing is that we
have on hand a transform which can handle

combined rotations, which will be needed
later.

GETTING INTO POSITION
Ifyou look at the overall picture described last
time you'll see that objects are moved into
their positions in the imaginary world inside
the computer with an object-to-world trans
form and then the world is projected on to the
screen with the viewing transform followed by
the perspective transform.

In this part, life is going to be made simple
by assuming that the observer, that's you, is
fixed in position at the origin of the world ref
erence frame.

So the world-to-view transform isn't needed

since these two frames are coincident. What

is left then is the object-to-world transform
which places the object at its current position
in the world frame.

The overall transform which does this is a

combination of a rotation to get it in the cor
rect orientation and a translation to put it in
the right place.

Translation here doesn't mean converting
from French to English, but is a bit of mathe
matical jargon meaning move it from here to
here.

In our case we take the current position of
the object to have the coordinates
(Oox,Ooy,Ooz) in the world frame so the

y "

J

K K

/Sr A

X

y y

L 2 3
1: Rotations about the

principal axes

2: A rotated object

] 1

z

/ ^^^^^^^

y>^ P

overall transform is:

@" R'(f)*(3
where R' is the rotation to get it pointed the
right way. We can use the rotational transform
that has already been worked out. In particu
lar when the rotation angle is changed a bit
each frame, the object will rotate.

The translation appears as a separate addi
tion on the right-hand side but it could be con
verted to a product if we were to go into
homogeneous coordinates.

But that would be making work for the sake
of it. In the program it is left as a simple addi
tion. This idea of a translation is quite impor
tant. If the object were to have a life of its own
it would alter Oox, Ooy and Ooz continously
from frame to frame.

THE PROGRAM
Let's have a look at the example program for
this part which, taken together with what has
gone before, is getting quite long. Remember
the program for this part uses the program
files from the earlier parts by INCLUDEing
them during assembly.

The INCLUDE directive is an instruction to

the assembler to add in all the earlier files,
which should all be on one disk. The example

3: A rotation in

two dimensions

program shows the ST monolith - a sign with
ST written on it - which we showed in per
spective last time, rotating about the z axis,
which points into the screen.

The rotation is done by decreasing the
angle each time by 10 from its initial value of
360 in the control program 3DJ34.S.

When it gets to zero the angle is reset to
360 and the cycle repeated. Screen buffering
is used to give flicker-free motion. Rotating
about either the x or y axis would be a prob
lem because that would attempt to show the
back of the object.

Since the back is hidden it should not be

visible. Removing surfaces which are not visi
ble is called hidden surface removal. That's

one of the topics we are going to cover next
time.

If we really wanted to see the back of the
ST monolith it would be necessary to draw the
back as a second object, 'pasted' on to the
front.

Apart from the new program sections there
is no new data this time, since it is possible to
use the static ST monolith shown in 3D_03 in
perspective. Now it is being rotated.

• This article and programs are
based on Andrew Tyler's book
Rea/Time 3D Graphics, published
recently by Sigma Press.

Atari ST User



REAL-TIME 3D GRAPHICS - PART FIVE

Hidden surfaces
and illumination
H

ere we are, poised for a big break
through in our graphics "pipeline".
Last time, the capability for rotation
was put into place. Now we'll add a

couple of very important new stages which
will add dramatically to the illusion on the
screen.

We don't want to draw surfaces which

shouldn't be seen - for example on the far
side of an object - and we want to add a vital
visual clue to the "solid" appearance of an
object by illuminating more brightly those sur
faces which face a light source.

It turns out that both of these can be done

conveniently together.

HIDDEN SURFACE REMOVAL
A computer is a fast number cruncher, but it
doesn't know anything about the real world.
When it comes to conveying simple everyday
experiences - like not being able to see
through solid opaque objects - the computer
is a real loser.

Making the computer show this simple fact
of life is hard work. It's called the hidden-sur

face problem and is the basis of some very
time-consuming algorithms in computer
graphics. In our programs we can make the
problem as simple as possible by ensuring
that polygon meshes (the joined-together
polygons which make objects) are convex,
that is, each polygon looks outward and not
towards another polygon.

Figure I shows a polygon mesh which is
completely closed and therefore forms a poly
hedron. The procedure for deciding whether
a surface is visible is straightforward in princi
ple: it is visible if it faces the viewer. The prob-

Andrew Tyler looks at how light and

movement affect the appearance of
three dimensional objects

lem is to convert the word "faces" into a math

ematical expression.
This is done in the following way. Each sur

face has associated with it a vector which

points out at right angles so that the polyhe
dron as a whole looks like a porcupine, as
shown in Figure I. Each of these vectors has
the same length, which is chosen to be unity
(1). They are called surface normal unit vec
tors. The only difference between vectors
therefore is their direction, which tells us
which way they face.

DOT THE VECTOR
For practical purposes in binary arithmetic, 1
is not a useful size for a vector and so, like
sines and cosines, it is multiplied by 2"
(16384). This keeps quantities within word
size and makes multiplication and division
simple.

The test to establish whether a surface is

visible from the view point consists of seeing
whether its unit vector is in the opposite direc
tion to a vector (the view vector) drawn from
the view point to the surface. Figure II shows
this.

The actual calculation which is done for vis

ibility is called the vector dot product (V.n) of
the view vector V and the normal vector n.

That sounds very mathematical but what it

amounts to is taking the products of corre
sponding components and adding them:

V.n = Vx.nx + Vy.ny + Vz.nz

This curious product has the useful property
that it's positive if the two vectors point the
same way (both to the left or both to the right),
but negative if they point in opposite direc
tions. For a surface to be visible the product
must be negative, which means the surface is
pointing back towards the viewer.

There's only one thing missing: the surface
normal unit vector. It has to be worked out.

But the effort is worthwhile since the normal

vector is also required to calculate the degree
of illumination of the surface forming a light
source, which we want to do as well.

CROSS THE VECTOR
To calculate the unit vector you need to do a
square root which, while not being a great
problem, does require additional work. For
the object we're going to display - the ST
monolith where each polygon is a rectangle -
it is possible to take a short cut, as discussed
below.

The first part of the task is to find the nor
mal vector which points outwards at right
angles from a surface. Figure III shows a nor- *^.

Figure 1
A closed

polygon mesh,
or polyhedron

XV

hidden

view point i II

JU / ""^n
Figure II

The test to

yv n^ ^^visible
/ V.n positive

establish

whether a V.n negative ^~\
surface is

visible from the

view point

July 1 991 Atari SIrilser
j, „,



>mal vector B between two vectors A12 and
A23 lying along adjacent edges of a polygon.

The way in which B is calculated from the
two edge vectors is called a vector cross
product; the second kind of product you can
do with vectors. Again, this sounds like
another complicated piece of maths, but what
it amounts to is an odd combination of prod
ucts of vector components:

Bx = A12z.A23y - A12y.A23z
By = A12x.A23z - A12z.A23x
Bz = A12y.A23x - A12x.A23y

Now to get the unit vector from B it is neces
sary to divide by the size of B to end up with
a unit vector of length 1. This all sounds a bit
daft but remember the unit vector still has x, y
and z components which is all we need to
see which way it's pointing.

Here's the short cut. It turns out that for

rectangular polygons the size of B is just the
area of the rectangle. Since all our polygons
are rectangles we can calculate their areas
beforehand and store them in a list, ready to
use.

Therefore, having calculated the compo
nents of B for a given rectangle, a simple divi
sion by its area taken from the list yields the
components of the surface normal unit vector.

ALL LIT UP
In 3D, one of the easiest and most dramatic
improvements to add realism to a model is
illumination by a light source. Facets which
face the light source are more brightly illumi
nated than those which face away. As the
object changes its orientation, so changes in
illumination give additional visual clues to its
shape and structure.

The new information we have to include is

a pointer to the direction of the light beam.
Figure IV shows howthis is done by means of
an illumination vector - yet another unit vector
pointing along the direction of the light beam.

You might be able to guess what bit of
maths will tell us the illumination intensity of a
surface. It is the vector dot product of the sur
face normal unit vector n and the illumination
vector I. This is where we can use n for a

second time.

Using the dot product this time isn't just a
convenient bit of maths which gives the right
sort of answer. There's another way of writing
the dot product which shows how it is related
to the angle 0 between the two vectors. Since
both n and I have size 1 it is:

l.n = cos@

What the dot product really gives, therefore, is
the cosine of the angle between the light
source and the surface normal. This is very
useful because it turns out that the brightness
of a surface really does vary this way. So in
this case the dot product gives a good
approximation to real life.

What actually happens in the program is
that the components of the unit vector are
multiplied by 2'4 to make them a convenient
size to use (like the sines and cosines we met
last time) and so the result of the dot product
is somewhere between +228 (directly away
from light) to -228 (facing the light).

All that remains is to add 228 and divide by
225 (by right shifting) to produce a result
between 0 and $f to give 16 illumination levels
which can then be mapped to the colour
palette.

In low resolution, which is the most colour-

Atari ST User July 1991

Figure III
Calculating the normal
vector which points out
at right angles from a
surface

xi,ai x3, y3

Figure IV
An illumination

vector gives a
pointer to the

direction of the

ight beam

ful, 16 different colours can be displayed
simultaneously on the ST out of a possible
512. This selection of 16 is called the colour

palette.
There are tricks to exceed 16 for the screen

as a whole by changing the colour palette
while a picture is being drawn but we will stick
to the basic 16. What we will do is set the
palette with different shades of different
colours so that the effects of illumination can

be seen.

An excellent aid to understanding how the
colour palette works is found in the Control
Panel Accessory which comes with the ST.
This shows three sliders of red, green and
blue, each with eight possible settings in low
resolution.

COLOURING IN
This means there are 8x8x8 = 512 possible
combinations. Have a play with the sliders to
see what can be obtained. Why can only 16 of
these be displayed at any one time? Because
there are four colour planes for each pixel on
the screen in low resolution which, put
together as bits, make a colour nibble.

The value of the pixel's colour nibble is then
used to index one of the 16 colours in the

palette. It only remains to see how the colour
palette can be set up from the settings on the
control panel.

Figure V shows the connections between
the control panel, the palette and the pixel
colour. The words which specify the colours
can be generated directly in hexadecimal
from the control panel settings. For example,
a setting of $777 means red=7, green=7 and
blue=7. Once the colours have been chosen,

they must be listed together and then loaded
into the colour palette with a call to the operat
ing system.

For our purposes, in order to simulate light-

Figure V
The connections

between the control

panel, the palette and
the pixel colour

illumination

vector

ing, the colours will be different shades of the
same colour. There is obviously a trade-off
here. The example program uses eight
shades of two colours in blue and red (called
the intrinsic colours) although other combina
tions are possible. The colours are listed fol
lowing the label palette in the file DATA_04.S.

EXAMPLE PROGRAM
This month's example program on the
CoverDisk shows the ST monolith, which has
previously been used to show perspective
and simple rotation, now in rotation about a
vertical axis and illuminated from the right-
hand side by a light source.

Also, hidden surface removal occurs so
that when the ST points away from the viewer
it is not drawn - this is vital for next month's

program where a solid object with several
sides will be displayed, in motion under key
board control.

The main control program is 3D_05.S and
is the one to assemble and run. It INCLUDES
all the others. All the new subroutines are in

the file CORE_04.S, consisting of, in order,
the calculation of the surface normal unit vec

tor, a determination of whether a surface is
visible and if so a calculation of its illumina

tion.

Finally in the routine set_colr the illumina
tion is combined with the surface intrinsic

colour (red or blue) to produce the final dis
played colour.

IN THE BOOK
This article and programs are adapted
from Real-Time 3D Graphics for the Atari
ST by Andrew Tyler, published recently by
Sigma Press. The book includes everything
here plus much more besides.



REAL-TIME 3D GRAPHICS - PART SIX

Getting it
together
Well here we are at the end of this

series on real-time 3D computer
graphics. In this instalment we
will use all the features developed

in the earlier parts of the series to construct a
real 3D object with rotation and movement,
controlled from the keyboard, and a fancy
shear transform just to show how dramatic
effects can be implemented at the press of a
key.

The object is a 3D cube - simply six ST
monoliths glued together. Hidden surface
removal makes sure the back faces aren't

seen and a lighting source from the right
highlights surfaces so that right-facing sur
faces are the brightest. This is very effective
when rotation takes place and gives added
realism to the whole image.

INSTANCE SUCCESS
The object we are going to construct here is
an ST cube. Figure I shows what it looks like.
It is, in fact, six ST faces joined together at the
edges. All we have to store in memory is the
detailed information necessary to draw one
ST face (essentially the same as the familiar
ST monolith) together with the orientations of
all the faces.

There is a special name given to this pro
cess of placing an object in its right position
and orientation in the world frame -

it is called an instance transform.

Constructing the ST cube from the
six faces requires an instance
transform on each of the faces.

To construct the cube in this

way an ST cube face is succes
sively rotated and displaced six
times to make each of the six

sides. The rotations and displace
ment of each of the faces are in the

lists inst_angles and inst_disp in
the data file DATA_05.S.s.

The rotation angles are in the
order 8, $ and a which are rotations
about the x, y and z axes respec
tively. So for the first face the
angles are (0,0,0) and the dis
placement is (0,0,0), which means FigureI,

In this, the glorious finale.
Andrew Tyler reveals all...

lying in the x-y plane. The next face has
angles (90,0,0) and a displacement (0,100,0)
which means it is rotated from the first face by
90 and then moved 100 along the y axis, and
so on. The ST cube isn't really a solid object
at all - it's a hollow box.

WHERE AM I?
We have used simple rotations in earlier parts
to rotate the ST monolith. Now we are going to
use them again to rotate the whole ST cube
once it is assembled. This time the rotation is

done in a slightly different way to let us intro
duce the idea of a view transform.

Figure II shows you, the viewer, looking at
the ST cube. The way the rotation can be
implemented is to keep the cube fixed in
space and move the observer around.

So, if the observer moves round the cube in
an orbit, but always looking towards it, the
cube will appear to rotate. This sounds like an
awfully complicated way of rotating the cube

(100,0,100)

Assembling the ST cube

but it emphasises the equivalence of rotating
the observer one way to rotating the scene
the other way. Just in case this sounds a bit
confusing, consider the following experiment.

Imagine yourself sitting in a swivel chair
positioned at the centre of a circular carpet in
a room with black featureless walls. Since

there is no external reference point - apart
from remembering what went on - it is not
possible to distinguish between rotating the
chair to the right on a stationary carpet, or
keeping the chair fixed and rotating the car
pet to the left.

You see the same relative movement of

chair and carpet, and the view of the carpet
pattern from the chair is the same in both
cases. There are special names given to
these two different transforms: rotating the
observer is called a co-ordinate transform

and rotating the object is called a geometric
transform.

A SIMPLE WORLD
With a simple world of one object they are
equivalent - but opposite. With a complicated
world we do not want to move each object
separately so we just move the observer. In
any case that is just what happens when the
observer is free to roam around the world.

In our case, when the observer is moved
the world is seen from a different viewpoint
and this is what we call the view transform.

Figure II shows the details of how to keep a
record of where we are relative to the ST

cube.

So, if you like to think of it that way, what we
are about to do is a view transform from the

world frame to the view frame of the observer.

In the first part of the program the cube is
assembled and placed in its final stationary
position in the imaginary world inside the
computer, and then we want to see what it>

August 1991 Atari ST User



Figure II. Looking at the cube

looks like from where we are. We are always a
constant distance (100) from the cube but the
angles 9 and $ are variables, changed from
the keyboard. In fact the combination of rota
tions which make up this world-to-view trans
form is hardly any different from that required
to place the object at its final orientation in the
world frame (object-to-world transform), but
we like to think of them as different so as to

distinguish their different functions clearly.
Figure III shows what the observer sees.

That's what the cube looks like to her/him,
and therefore forms the basis of the perspec
tive projection on to the screen.

We have to invent a strategy for following
the motion of the observer in his

orbit. There is more than one option.
The simplest is to keep a record of
the angles 9 and <\> and do just two
rotations to get to the final position. It
would also be possible to include a
"roll" about the line of sight to the
cube with an additional rotation

about the z axis.

This simple method works OK and
is widely used, but it does give a
curious orbital type of motion like fol
lowing lines of longitude and lati
tude. The angle 9 is the angle of lon
gitude and the angle 0 is the angle
of latitude.

Figure II tells us in what order to do the
rotations by seeing what to do to get the
observer back looking along the zw axis:
rotate first about xw by - 9 to get into the xw-
zw plane and then about yw by - $ to get
back along the zw axis. If this sequence of
rotations is actually applied to the object, then
the overall effect is the same.

THE EXAMPLE PROGRAM
To see how the orbital type motion results
from doing things this way, remember the
order of rotation is always the same: first 9
and second $. So if 9 is zero, then increasing
9 continuously makes the object appear to
rotate from right to left.

But if 0 is fixed at 90, increasing 9 continu
ously now results in looking at the top face of
the cube which spins round clockwise. Con
fusing isn't it! That's what 3D rotations are
like! If the changes to 9 and $ are controlled
independently from a keyboard, joystick or
mouse, it's quite easy to get lost if you don't
realise what's going on.

In this month's program the two angles are
controlled separately from the f3 and f4 keys.
You can make the cube move away from or
towards you (up to a limit) with the keys f2
and f1. f6 stops the motion and f7 terminates.

Since rotations can be implemented at the
touch of a key, things change on the screen
almost instantaneously. There's nothing
wrong with that, if it's what you want, but in
the real physical world objects don't move
instantaneously. What holds them back is
their inertia, or mass - some physics creeping

Atari ST User August 1991

in here. To try to inject some illusion of
reality into the ST cube, a simulation
of inertia has been included in the

program. A simple trick has been
employed to do this. Instead of the
object actually rotating by a fixed
amount when a key is pressed,
instead an angle increment is
increased.

The angle increment is the amount
by which the angle is increased each
time. If you think about it this means
that the object rotates faster and

faster the longer a key is pressed. Likewise it
takes some time to slow down even after the

key has been released. The effect of this
looks like inertia.

SHEAR MADNESS
Here's something flashy you can do with
geometry. It's especially easy for us because
of the way matrices have been used to do
transforms. In fact, if you follow how the next
transform is done you can invent your own,
sometimes with quite fascinating results.

Rotational transforms are necessary for all
motion - other than simple linear displace
ment. But they aren't the only kind of trans-

xv

A

yv

Figure III. What the viewer sees

form that can be done by matrices. Rotations
have the important property that they don't
change the volume of an object.

The transform we are about to use does. It

squashes the object but otherwise leaves it
intact. It's called a shear transform. Figure IV
shows a cube after a particular type of shear.
It's as if two opposite corners have been
pulled apart.

The resulting object is a lozenge-shaped
diamond. What has happened is that all x val
ues have been incremented in proportion to
their y and z values. The transform that does
this is:

In the program this transform is switched
on and off by toggling the f5 key. To
make sure the arithmetic doesn't over

flow, there is an accompanying reduc
tion in size. But this can be corrected by
bringing the object closer with the f1
key.

Because the shear matrix is 3x3 like

the rotations, the two of these are multi
plied together to make one overall trans
form. The jargon name for this is con
catenation.

Because the shear transform is so

simple, you can write your own version.
The elements of the matrix are listed as

shearmtx, in row order, in the file
DATA_05.S. Just rearrange the 1's and

0's and see what you get. Don't use numbers
greater than 1 or arithmetic overflow will
occur with unpredictable results.

Input to the program from the keyboard is
straightforward - the operating system of the
ST provides several routines. We use two
BIOS routines called BCONSTAT and

BCONIN in succession. The first, which we
have already used repeatedly to terminate
programs, reports whether a key has been
pressed, and the second finds out which one
by returning the key code in the upper word
of register DO.

You'll find the second in the file

SYSTM_03.S. The only keys we are interested
in are the function keys f1 to f7 which have
the codes $3B through $41. In the subroutine
keyjn in the COREJD5.S file the key code is
used as an index to a jump vector to call an
appropriate subroutine.

Here is an ST cube which you can rotate,
shear, move away from or towards under key
board control. Don't hold your finger down on
a key for long since the buffer isn't emptied
and a long press will fill it up with a repeating
code.

Copy this month's programs on to your
disk with all the accumulated programs from

the series and assemble the control

file 3D_06.S. It will INCLUDE all the
others. An already- assembled file
3D_06.PRG is included in case you
have problems.

One last thing. Although the pro
grams have been tested extensively,
there is no guarantee that they won't
ever crash, particularly if you alter
them slightly. Sometimes when a pro
gram crashes it corrupts the data on
the disk and in memory.

For this reason you should always
work with a copy of the files and
remember to keep the write-protect
window open on the master disk. Fol

lowing this simple procedure will prevent a lot
of unnecessary grief.

THE BOOK
This series has been adapted from the first
part of a new book Real Time 3D Graphics
For The Atari ST now available from Sigma
Press. The book contains all that has been

discussed in the series in greater detail,
together with many additional topics includ
ing input from the joystick and mouse, creat
ing a model world and flying around it under
joystick control.

In short, everything you need to start a
flight simulator of your own, all in colour, with
illumination highlighting and running in real
time. Real Time 3D Graphics For The Atari ST
also contains eight technical appendices to
help with the programming.

V

Figure IV. The sheared cube


	1: Drawing on the Screen
	Quick Draw
	Assuming Assembly
	Fast Furius Filling
	Joining the Dots
	Buffing Up Bresenham
	On the Right Line
	In Glorious Colour
	Take a Look at These
	In The Book

	2: A Window in the World
	Through the Window
	Clipping Algorithm
	Calculation by Iteration
	Screen Buffering
	Operating System
	The Example Program

	3: A point of view
	Confused?
	A Great Monolith
	On The Disk

	4: Going Round in Circles
	Trig Tables
	A Sine for All Angles
	Into The Matrix
	Getting Into Position
	The Program

	5: Hidden Surfaces and Illumination
	Hidden Surface Removal
	Dot the Vector
	Cross the Vector
	All Lit Up
	Colouring In
	Example Program

	6: Getting It Together
	Instance Success
	Where Am I?
	A Simple World
	The Example Program
	Shear Madness
	The Book

	Jargon Lists
	1: Drawing on the Screen
	2: A Window in the World
	3: A point of view




